Effects of sampling method on foliar δ13C of Leymus chinensis at different scales
نویسندگان
چکیده
Stable carbon isotope composition (δ (13)C) usually shows a negative relationship with precipitation at a large scale. We hypothesized that sampling method affects foliar δ (13)C and its response pattern to precipitation. We selected 11 sites along a precipitation gradient in Inner Mongolia and collected leaves of Leymus chinensis with five or six replications repeatedly in each site from 2009 to 2011. Additionally, we collected leaves of L. chinensis separately from two types of grassland (grazed and fenced) in 2011. Foliar δ (13)C values of all samples were measured. We compared the patterns that foliar δ (13)C to precipitation among different years or different sample sizes, the differences of foliar δ (13)C between grazed and fenced grassland. Whether actual annual precipitation (AAP) or mean annual precipitation (MAP), it was strongly correlated with foliar δ (13)C every year. Significant difference was found between the slopes of foliar δ (13)C to AAP and MAP every year, among the slopes of foliar δ (13)C to AAP from 2009 to 2011. The more samples used at each site the lower and convergent P-values of the linear regression test between foliar δ (13)C and precipitation. Furthermore, there was significant lower foliar δ (13)C value in presence of grazed type than fenced type grassland. These findings provide evidence that there is significant effect of sampling method to foliar δ (13)C and its response pattern to precipitation of L. chinensis. Our results have valuable implications in methodology for future field sampling studies.
منابع مشابه
Effects of sampling method on foliar dC of Leymus chinensis at different scales
chinensis at different scales Yanjie Liu, Yan Li, Lirong Zhang, Xingliang Xu & Haishan Niu College of Resources and Environment, University of Chinese Academy of Sciences, 19-A Yuquan Road, Beijing 100049, China Ecology, Department of Biology, University of Konstanz, Universit€atsstrasse 10, D-78457 Konstanz, Germany Key Laboratory and Ecosystem Network Observation and Modelling, Institute of G...
متن کاملFoliar δ13C response patterns along a moisture gradient arising from genetic variation and phenotypic plasticity in grassland species of Inner Mongolia
Plants depend upon both genetic differences and phenotypic plasticity to cope with environmental variation over different timescales. The spatial variation in foliar δ(13)C levels along a moisture gradient represents an overlay of genetic and plastic responses. We hypothesized that such a spatial variation would be more obvious than the variation arising purely from a plastic response to moistu...
متن کاملCarbon isotopes of C3 herbs correlate with temperature on removing the influence of precipitation across a temperature transect in the agro‐pastoral ecotone of northern China
Plant δ13C-temperature (δ-T) relation has been established in many systems and is often used as paleotemperature transfer function. However, it is still unclear about the exact contributions of temperature variation to plant 13C discrimination because of covariation between temperature and precipitation (aridity), which reduces confidence in reconstruction of paleoclimate. In this study, we mea...
متن کاملUnderstanding the wide geographic range of a clonal perennial grass: plasticity versus local adaptation
Both phenotypic plasticity and local adaptation may allow widely distributed plant species to either acclimate or adapt to environmental heterogeneity. Given the typically low genetic variation of clonal plants across their habitats, phenotypic plasticity may be the primary adaptive strategy allowing them to thrive across a wide range of habitats. In this study, the mechanism supporting the wid...
متن کاملDrought Sensitivity of the Carbon Isotope Composition of Leaf Dark-Respired CO2 in C3 (Leymus chinensis) and C4 (Chloris virgata and Hemarthria altissima) Grasses in Northeast China
Whether photosynthetic pathway differences exist in the amplitude of nighttime variations in the carbon isotope composition of leaf dark-respired CO2 (δ13Cl) and respiratory apparent isotope fractionation relative to biomass (ΔR,biomass) in response to drought stress is unclear. These differences, if present, would be important for the partitioning of C3-C4 mixed ecosystem C fluxes. We measured...
متن کامل